Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A vertebrate-specific and essential role for osterix in osteogenesis revealed by gene knockout in the teleost medaka.

Development 2017 January 16
osterix (osx; sp7) encodes a zinc-finger transcription factor that controls osteoblast differentiation in mammals. Although identified in all vertebrate lineages, its role in non-mammalian bone formation remains elusive. Here, we show that an osx mutation in medaka results in severe bone defects and larval lethality. Pre-osteoblasts fail to differentiate leading to severe intramembranous and perichondral ossification defects. The notochord sheath mineralizes normally, supporting the idea of an osteoblast-independent mechanism for teleost vertebral centra formation. This study establishes a key role for Osx for bone formation in a non-mammalian species, and reveals conserved and non-conserved features in vertebrate bone formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app