JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos.

Development 2017 Februrary 2
During development from oocyte to embryo, genetic programs in mouse germ cells are reshaped by chromatin remodeling to orchestrate the onset of development. Epigenetic modifications of specific amino acid residues of core histones and their isoforms can dramatically alter activation and suppression of gene expression. H3.3 is a histone H3 variant that plays essential roles in mouse oocytes and early embryos, but the functional role of individual amino acid residues has been unclear because of technical hurdles. Here, we describe two strategies that successfully investigated the functions of three individual H3.3 residues in oogenesis, cleavage-stage embryogenesis and early development. We first generated genetic mosaic ovaries and blastocysts with stochastic expression of wild-type or mutant H3.3 alleles and showed dominant negative effects of H3.3R26 and H3.3K27 in modulating oogenesis and partitioning cells to the inner cell mass of the early embryo. Time-lapse imaging assays also revealed the essential roles of H3.3K56 in efficient H2B incorporation and paternal pronuclei formation. Application of these strategies can be extended to investigate roles of additional H3.3 residues and has implications for use in other developmental systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app