JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Vaporization Mechanisms of Water-Insoluble Cs in Ash During Thermal Treatment with Calcium Chloride Addition.

The vaporization mechanisms of water-insoluble Cs in raw ash and Cs-doped ash during thermal treatment with CaCl2 addition was systematically examined in a lab-scale electrical heating furnace over a temperature range of 500-1500 °C. The results indicate that the water-insoluble Cs in the ash was associated with aluminosilicate as pollucite. Addition of 10% CaCl2 caused the maximum vaporization ratio of Cs in the raw ash to reach approximately 80% at temperatures higher than 1200 °C, whereas approximately 95% of Cs was vaporized at temperatures higher than 1300 °C when 30% CaCl2 was added. The formation of an intermediate compound, CsCaCl3 , through the chemical reaction of Cs with CaCl2 was responsible for Cs vaporization by means of the subsequent decomposition of this intermediate upon the increase in temperature. The indirect chlorination of Cs by the gaseous chlorine released from the decomposition of CaCl2 was insignificant. A high CaCl2 content in the resulting annealed products with 30% CaCl2 addition delayed the decomposition of CsCaCl3 and thus lowered the Cs vaporization ratio compared to that with 10% CaCl2 addition at 900-1250 °C. Thermal treatment with CaCl2 addition is a proposed method to remove Cs from Cs-contaminated incineration ash.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app