Add like
Add dislike
Add to saved papers

Comparison of Constant-Posture Force-Varying EMG-Force Dynamic Models About the Elbow.

Numerous techniques have been used to minimize error in relating the surface electromyogram (EMG) to elbow joint torque. We compare the use of three techniques to further reduce error. First, most EMG-torque models only use estimates of EMG standard deviation as inputs. We studied the additional features of average waveform length, slope sign change rate and zero crossing rate. Second, multiple channels of EMG from the biceps, and separately from the triceps, have been combined to produce two low-variance model inputs. We contrasted this channel combination with using each EMG separately. Third, we previously modeled nonlinearity in the EMG-torque relationship via a polynomial. We contrasted our model vs. that of the classic exponential power law of Vredenbregt and Rau [1]. Results from 65 subjects performing constant-posture, force-varying contraction gave a "baseline" comparison error (i.e., error with none of the new techniques) of 5.5 ± 2.3% maximum flexion voluntary contraction (%MVCF). Combining the techniques of multiple features with individual channels reduced error to 4.8 ± 2.2 %MVCF, while combining individual channels with the power-law model reduced error to 4.7 ± 2.0 %MVCF. The new techniques further reduced error from that of the baseline by ≈15%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app