Add like
Add dislike
Add to saved papers

Silver ions as em marker of congo red ligation sites in amyloids and amyloid-like aggregates.

Congo red (CR) is a known selective amyloid ligand. The focus of our work is identification (by EM imaging) of dye binding sites and their distribution in amyloids and amyloid-like aggregates formed in vitro. In order to produce the required contrast, CR has been indirectly combined with metal via including Titan yellow (TY) by intercalation which exhibits a relatively strong affinity for silver ions. The resulting combined ligand retains its ability to bind to proteins (which it owes to CR) and can easily be detected in EM studies thanks to TY. We have found, however, that in protein aggregates where unfolding is stabilized by aggregation and therefore is irreversible, TY alone may serve as both, the ligand and the metal carrier. The formation of ordered structures in amyloids was studied using IgG light chains with amyloidogenic properties, converted into amyloids by shaking. The resulting EM images were subjected to interpretation on the basis of the authors' earlier research on the CR/light chain complexation process. Our results indicate that dimeric light chains, which are the subject of our study, produce amyloids or amyloid-like complexes with chain-like properties and strong helicalization tendencies. Cursory analysis suggests that the edge polypeptide loops belonging to unstable light chains form intermolecular bridges which promote creation of loose gel deposits, or are otherwise engaged in the swapping processes leading to higher structural ordering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app