Add like
Add dislike
Add to saved papers

Ultrafine Co-based Nanoparticle@Mesoporous Carbon Nanospheres toward High-Performance Supercapacitors.

A general synthetic methodology is reported to grow ultrafine cobalt-based nanoparticles (NPs, 2-7 nm) within high-surface-area mesoporous carbon (MC) frameworks. Our design strategy is based on colloidal amphiphile (CAM) templated oxidative self-polymerization of dopamine. The CAM templates consisting of a hydrophobic silica-like core and a hydrophilic PEO shell can coassemble with dopamine and template its self-polymerization to form polydopamine (PDA) nanospheres. Given that PDA has rich binding sites such as catechol and amine to coordinate metal ions (e.g., Co2+ ), PDA nanospheres containing Co2+ ions can be converted into hierarchical porous carbon frameworks containing ultrafine metallic Co NPs (Co@MC) using high-temperature pyrolysis. The CAM templates offer strong "nanoconfinements" to prevent the overgrowth of Co NPs within carbon frameworks. The yielded ultrafine Co NPs have an average size of <7 nm even at a very high loading of 65 wt %. Co@MC can be further converted into various oxides and sulfides, e.g., CoO, Co3 O4 , CoS2 and transition-metal doped bimetallic Cox M1-x S2 , without significantly changing the size of NPs. As a proof-of-concept application, the porous Co-based NPs@MC hybrids were used as electrode materials for supercapacitors, which exhibit excellent supercapacitive performance with outstanding long-term cycling stability, due to the features such as ultrafine size, controllable chemical compositions, hierarchical porous structures, and full coverage of conductive carbons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app