Add like
Add dislike
Add to saved papers

Shape induced acid responsive heat triggered highly facilitated drug release by cube shaped magnetite nanoparticles.

Biomicrofluidics 2016 November
This paper reports a very simple yet better method for synthesis of cube shaped magnetite nanoparticles (MNPs) and their application in the drug delivery system (DDS). Structural analysis was done by XRD measurements to confirm the phase of the material, and morphological information was obtained through TEM analysis to confirm the shape and size of the particles. It has been shown that these particles can be decomposed in acid medium. These acid-decomposable magnetite nano-particles have been used for heat triggered, remote-controlled, on demand delivery and release of a cancer drug doxorubicin for research and therapeutic purposes. Here, we have shown that the pH stimulated and heat-triggered release of drug from our MNPs significantly enhances the release efficiency. In this case, we observe that pH induced release is far better in comparison to heat-triggered release. From these inspiring results, it may be expected that this methodology may become a significant step towards the development of a pH-sensitive heat triggered drug delivery system minimizing drug toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app