Add like
Add dislike
Add to saved papers

Archaeal histone distribution is associated with archaeal genome base composition.

A subpopulation of Archaea possesses histones, which are similar to eukaryotic histones H3 and H4. However, archaeal histones are smaller than H3 and H4, and are not post-translationally modified. In addition, the fundamental unit of archaeal histones might be a dimer. The organization of archaeal nucleosomes, therefore, differs from that of eukaryotic nucleosomes. The base compositions of archaeal genome are much more diversified than those of eukaryote and the archaeal histones have more diversified amino acid sequences, which are reflected by their varied isoelectric points. We hypothesized that the highly diversified archaeal genomic DNA base composition may cause the archaeal histone variation. Phylogenetic analysis revealed that the distribution of archaeal histones is associated with their genomic DNA base composition. This result strongly suggests that archaeal histones have evolved concomitantly with their genomic DNA base composition. Eukaryotic histones are one of the most evolutionarily conserved proteins and would limit the diversification of genomic DNA base composition. In contrast, archaeal histones have diversified and would permit the great diversification of genomic DNA base composition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app