Journal Article
Meta-Analysis
Add like
Add dislike
Add to saved papers

Meta-Analysis of Microarray-Based Expression Profiles to Identify Differentially Expressed Genes in Intracranial Aneurysms.

World Neurosurgery 2017 January
OBJECTIVE: To gain comprehensive insight into the molecular mechanism of formation and rupture of intracranial aneurysms (IAs).

METHODS: All publicly accessible microarray-based whole-genome gene expression profiles on IAs were retrieved. The significance analysis of microarrays method was applied to identify differentially expressed genes (DEGs). Functional annotation was performed using gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Expression of DEGs was examined using quantitative polymerase chain reaction.

RESULTS: Six data sets of 3 microarray platforms were qualified and analyzed. Comparing expression profiles between aneurysmal wall and control vessels, 5232 significant DEGs were identified among 3 platforms, and MMP12 was shown to have the largest fold change of upregulation. In all 3 platforms, 46 DEGs were shared, and 1297 DEGs were commonly resolved in at least 2 microarray platforms. Among these 1297 concordant DEGs, the 512 upregulated genes were mainly enriched in inflammatory and immune response processes, whereas the 785 downregulated genes were primarily concentrated in smooth muscle cell contraction and development pathways. Comparison between expression profiles of ruptured and unruptured IAs revealed that a few angiogenic factors, including HIF1A, VEGFA, and ANGPTL4, were upregulated in ruptured aneurysms. Subsequently, the upregulation of MMP12, HIF1A, and VEGFA was partially confirmed using quantitative polymerase chain reaction among independent samples.

CONCLUSIONS: Inflammation, immune response, and loss of contractile vascular smooth muscle cells could potentially contribute to the formation of IAs, whereas the role of angiogenesis and vascular remodeling in IA formation and rupture needs further exploration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app