JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tumor suppressor RYBP harbors three nuclear localization signals and its cytoplasm-located mutant exerts more potent anti-cancer activities than corresponding wild type.

Cellular Signalling 2017 January
Ectopically expressed Ring1 and YY1 binding protein (RYBP) induces tumor cell apoptosis through promoting the formation of the death-inducing signaling complex (DISC) in the cytoplasm. However, transiently overexpressed as well as endogenous RYBP in tumor tissues were observed to be mainly located in the nucleus while that in adjacent non-tumor tissues distributed majorly in the cytoplasm. Currently, we do not know the nuclear localization signals and biological function of different subcellular location of RYBP. In this study, we employed bioinformatic analysis, deletion, point mutation, enhanced green fluorescence protein (EGFP) fusion and others, to investigate the elements responsible for RYBP nuclear import and to explore the anti-tumor activities of cytoplasm- and nuclear-located RYBP. Herein, we identified three functional monopartite nuclear localization signals (NLSs), all of which located at the N-terminus of RYBP. Through four basic amino acid replacements within the NLSs, we obtained a cytoplasm-located RYBP mutant (RYBPmut). Compared with wild-type counterpart, RYBPmut exhibited more potent abilities to bind to caspase 8, to prevent MDM2-mediated polyubiquitination and degradation of p53, thereby leading to its stabilization. Further investigation revealed that, in contrast to its wild type, RYBPmut showed more potentials to inhibit tumor cell proliferation and to induce apoptosis, in both p53-dependent and -independent manner. Collectively, our current study revealed the molecular mechanism responsible for RYBP nuclear translocation, and provided evidences to support that RYBPmut could be a more promising candidate agent for cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app