Add like
Add dislike
Add to saved papers

Manganese Tricarbonyl Complexes with Asymmetric 2-Iminopyridine Ligands: Toward Decoupling Steric and Electronic Factors in Electrocatalytic CO 2 Reduction.

Inorganic Chemistry 2016 December 20
Manganese tricarbonyl bromide complexes incorporating IP (2-(phenylimino)pyridine) derivatives, [MnBr(CO)3 (IP)], are demonstrated as a new group of catalysts for CO2 reduction, which represent the first example of utilization of (phenylimino)pyridine ligands on manganese centers for this purpose. The key feature is the asymmetric structure of the redox-noninnocent ligand that permits independent tuning of its steric and electronic properties. The α-diimine ligands and five new Mn(I) compounds have been synthesized, isolated in high yields, and fully characterized, including X-ray crystallography. Their electrochemical and electrocatalytic behavior was investigated using cyclic voltammetry and UV-vis-IR spectroelectrochemistry within an OTTLE cell. Mechanistic investigations under an inert atmosphere have revealed differences in the nature of the reduction products as a function of steric bulk of the ligand. The direct ECE (electrochemical-chemical-electrochemical) formation of a five-coordinate anion [Mn(CO)3 (IP)]- , a product of two-electron reduction of the parent complex, is observed in the case of the bulky DIPIMP (2-[((2,6-diisopropylphenyl)imino)methyl]pyridine), TBIMP (2-[((2-tert-butylphenyl)imino)methyl]pyridine), and TBIEP (2-[((2-tert-butylphenyl)imino)ethyl]pyridine) derivatives. This process is replaced for the least sterically demanding IP ligand in [MnBr(CO)3 (IMP)] (2-[(phenylimino)methyl]pyridine) by the stepwise formation of such a monoanion via an ECEC(E) mechanism involving also the intermediate Mn-Mn dimer [Mn(CO)3 (IMP)]2 . The complex [MnBr(CO)3 (IPIMP)] (2-[((2-diisopropylphenyl)imino)methyl]pyridine), which carries a moderately electron donating, moderately bulky IP ligand, shows an intermediate behavior where both the five-coordinate anion and its dimeric precursor are jointly detected on the time scale of the spectroelectrochemical experiments. Under an atmosphere of CO2 the studied complexes, except for the DIPIMP derivative, rapidly coordinate CO2 , forming stable bicarbonate intermediates, with no dimer being observed. Such behavior indicates that the CO2 binding is outcompeting another pathway: viz., the dimerization reaction between the five-coordinate anion and the neutral parent complex. The bicarbonate intermediate species undergo reduction at more negative potentials (ca. -2.2 V vs Fc/Fc+ ), recovering [Mn(CO)3 (IP)]- and triggering the catalytic production of CO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app