Add like
Add dislike
Add to saved papers

Theoretical Insights into Halogenated Uranium Cyanide/Isocyanide Compounds.

Inorganic Chemistry 2016 December 20
Two kinds of halogenated uranium cyanide/isocyanide compounds, XUCN and XUNC (X = halogen) formed by the insertion of uranium atom into X-C(N) bonds of XCN (or XNC), were investigated by DFT and ab initio methods. Although XNC is less stable thermodynamically than XCN, XUNC is more stable than XUCN and is expected to be prepared and characterized in matrix isolation experiments. The C-N stretching vibration mode (νC-N ) is the primary fingerprint for the identification of these isomers due to its red-shift character with respect to the relevant precursor. Atoms-in-molecule (AIM) analysis illustrates that both X-U and U-C(N) bonds in XUCN and XUNC show closed-shell interaction character, although partial covalent character contributes to them, and can be denoted as X- U2+ (CN)- and X- U2+ (NC)- , respectively. Charge decomposition analysis (CDA) further reveals that the isocyanide exhibits better donation performance than the cyanide, which should be the root cause of the difference between XUCN and XUNC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app