Add like
Add dislike
Add to saved papers

Characterizing human cytomegalovirus reinfection in congenitally infected infants: an evolutionary perspective.

Given the strong selective pressures often faced by populations when colonizing a novel habitat, the level of variation present on which selection may act is an important indicator of adaptive potential. While often discussed in an ecological context, this notion is also highly relevant in our clinical understanding of viral infection, in which the novel habitat is a new host. Thus, quantifying the factors determining levels of variation is of considerable importance for the design of improved treatment strategies. Here, we focus on such a quantification of human cytomegalovirus (HCMV) - a virus which can be transmitted across the placenta, resulting in foetal infection that can potentially cause severe disease in multiple organs. Recent studies using genomewide sequencing data have demonstrated that viral populations in some congenitally infected infants diverge rapidly over time and between tissue compartments within individuals, while in other infants, the populations remain highly stable. Here, we investigate the underlying causes of these extreme differences in observed intrahost levels of variation by estimating the underlying demographic histories of infection. Importantly, reinfection (i.e. population admixture) appears to be an important, and previously unappreciated, player. We highlight illustrative examples likely to represent a single-population transmission from a mother during pregnancy and multiple-population transmissions during pregnancy and after birth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app