Add like
Add dislike
Add to saved papers

PAMAM-pullulan conjugates as targeted gene carriers for liver cell.

Carbohydrate Polymers 2017 Februrary 11
Targeted nano-carriers are highly needed to promote nucleic acid delivery into the specific cell for therapeutic approaches. Pullulan as a linear carbohydrate has an intrinsic liver targeting property interacting with asialoglycoprotein receptor (ASGPR) found on liver cells. In the present study, we developed polyamidoamine (PAMAM)-pullulan conjugates and investigated their targeting activity in delivering gene into liver cells. The particle size, zeta potential, buffering capacity and ethidium bromide exclusion assays of the conjugates were evaluated. The cytotoxicity and transfection efficiency of new derivatives were assessed following in vitro transfection of HepG2 (receptor positive) and N2A (receptor negative) cell lines. Size of conjugated polymers ranged between 118 and 184 nanometers and their cytotoxicity were similar to PAMAM. Among six produced nanocarriers, G4PU4 and G5PU4 enhanced transfection efficiency in HepG2 cells compared to unmodified PAMAM. Therefore, the PAMAM-pullulan derivatives seem to improve delivery of nucleic acids into the liver cells expressing asialoglycoprotein receptor with minimal transfection in non-targeted cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app