Add like
Add dislike
Add to saved papers

Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases.

Carbohydrate Polymers 2017 Februrary 11
α-Amylase first hydrolyzes starch structures to linear maltooligosaccharides and branched α-limit dextrins, then complete hydrolysis to glucose takes place through the mucosal α-glucosidases. In this study, we hydrolyzed waxy corn starch (WCS) by human pancreatic α-amylase to determine the digestion and structural properties of different size fractions of the branched α-limit dextrins. The α-amylolyzed WCS was separated by size exclusion chromatography, and the analyzed chromatograms showed four main hydrolyzate fractions. The first three eluted peaks (regions I-III) corresponded to branched α-limit dextrins, while region IV was the linear maltooligosaccharides. Based on the chromatographic and NMR analyses of the individual peaks, Region I, II, and III had multiple (>2), two, and one α-1,6 linkages, respectively, and region I was the most slowly hydrolyzed to glucose by mucosal α-glucosidases (hydrolysis rate: Region I<II<III<IV). This study shows the possibility of producing slowly digestible oligosaccharides that may decrease postprandial glycemic response and control glucose delivery to the body, to address metabolic syndrome-associated diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app