Add like
Add dislike
Add to saved papers

Minor polysaccharidic constituents from the red seaweed Hypnea musciformis. Appearance of a novel branched uronic acid.

Carbohydrate Polymers 2017 Februrary 11
Two polysaccharide fractions isolated from Hypnea musciformis after room temperature- and hot water extraction, soluble after KCl precipitation of the more abundant carrageenans, were subfractionated by ion-exchange chromatography eluting with increasing concentrations of NaCl. The lowest NaCl concentration (0.2M) eluted agarans. The dl-hybrids (or mixtures) eluted at intermediate concentrations of NaCl. The d/l-galactose ratio and the sulfate proportion increased with the NaCl concentration. Different types of substitution were present, mainly at C-3 with sulfate, Xyl and methylated Gal stubs, as well as low amounts of 3,6-AnGal. A novel constituent, identified as 3-C-carboxy-d-erythrose1 in its β-furanosic form, was found linked to C-6 of β-Gal units. A search carried out in other species like Iridaea undulosa and Kappaphycus alvarezii also revealed the same constituent. Finally, the late-eluting fractions were mostly carrageenans, with a structure consistent with that of a κ/ι/ν-carrageenan hybrid.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app