Add like
Add dislike
Add to saved papers

Polyethyleneimine brushes effectively inhibit encrustation on polyurethane ureteral stents both in dynamic bioreactor and in vivo.

Polyurethane (PU) ureteral stents have been widely used as biomedical devices to aid the flow of the urine. Due to the biofilm formation and encrustation complications it has been hindered their long term clinical usage. To overcome these complications, in this study, cationic polyethyleneimine (PEI) brushes grafted on PU stents and their performances were tested both in a dynamic biofilm reactor system (in vitro) and in a rat model (in vivo). Thus, we hypothesized that PEI brushes inhibit bacterial adhesion owing to the dynamic motion of brushes in liquid environment. In addition, cationic structure of PEI disrupts the membrane and so kills the bacteria on time of contact. Cationic PEI brushes decreased the biofilm formation up to 2 orders of magnitude and approximately 50% of encrustation amount in respect to unmodified PU, in vitro. In addition, according to Atomic Absorption Spectroscopy (AAS) results, approximately 90% of encrustation was inhibited on in vivo animal models. Decrease in encrustation was clearly observed on the stents obtained from rat model, by Scanning Electron Microscopy (SEM). Also, histological evaluations showed that; PEI brush grafting decreased host tissue inflammation in close relation to decrease in biofilm formation and encrustation. As a results; dual effect of anti-adhesive and contact-killing antibacterial strategy showed high efficiency on PEI brushes grafted PU stents both in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app