Add like
Add dislike
Add to saved papers

Role of vessel-to-prosthesis size mismatch in venous valve performance.

BACKGROUND: Efforts to treat chronic venous insufficiency have focused on the development of prosthetic venous valves. The role of prosthetic valve-to-vessel size matching has not been determined. The purpose of this investigation was to assess the effect of size mismatching on venous valve function and to establish a mismatch limit that affects valve hemodynamic performance and venous wall stress to improve future valve designs and implants.

METHODS: Flow dynamics of prosthetic venous valves were studied in vitro using a pulse duplicator flow loop. Valve performance based on flow rate and pressure measurements was determined at oversizing ratios ranging from 4.2% to 25%. Valve open area ratios at different size mismatching ratios were investigated by image analysis. Finally, a wall stress analysis was used to determine the magnitude of circumferential (hoop) stress in the venous wall at various degrees of oversizing.

RESULTS: Our findings indicate that valve regurgitate volume, closing time, and pressure difference across the valve are significantly elevated at mismatch ratios greater than ∼15%. This is supported by increases in regurgitate velocity and open area relative to valves tested at near-nominal diameters. At this degree of size mismatch, the wall stress is increased by a factor of two to three times relative to physiologic pressures.

CONCLUSIONS: These findings establish a relationship between valve size matching and valve hemodynamic performance, including vessel wall stress, which should be considered in future valve implants. The size of the prosthetic valve should be within 15% of maximum vein size to optimize venous valve hemodynamic performance and to minimize the hoop wall stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app