Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structural differences in hippocampal subfields among schizophrenia patients, major depressive disorder patients, and healthy subjects.

Many MRI studies have reported a volume reduction of the hippocampus in psychiatric diseases. However, disease-related volume differences in hippocampus subfields remain unclear. Here we compared the volumes of hippocampus subfields in patients with schizophrenia, patients with major depressive disorder (MDD), and healthy subjects as controls. T2-weighted images were acquired in 20 patients with schizophrenia, 36 with MDD, and 35 healthy volunteers by 3-Tesla MRI. Hippocampal subfields were segmented using an automatic algorithm, Automatic Segmentation of Hippocampal Subfields (ASHS). Schizophrenia patients exhibited significant volume reductions in the cornu ammonis (CA)1 compared to the controls, and in the dentate gyrus compared to the controls and MDD patients without medication, whereas there was no significant difference between the MDD patients and controls. There was a nominal negative correlation between the perirhinal cortex volume and depression severity in the MDD patients without medication, whereas there were negative correlations between CA2 volume and both negative symptoms and the duration of illness in the schizophrenia patients. We identified differing volume reductions in hippocampal subfields and varying correlations between disease severity and subfield volumes depending on diagnosis, suggesting that volume differences in hippocampus subfields may provide important information regarding the pathophysiology of schizophrenia and MDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app