Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Spodoptera exigua (Lepidoptera: Noctuidae) ABCC2 Mediates Cry1Ac Cytotoxicity and, in Conjunction with Cadherin, Contributes to Enhance Cry1Ca Toxicity in Sf9 Cells.

In insects, the mode of Cry1A toxins action has been studied in detail and many receptors that participate in the process are known. Recent evidence has revealed that an ABC transporter (ABCC2) is involved in conferring resistance to Cry1A toxins and that ABCC2 could be a receptor of Cry1A. However, it is not known whether Cry1Ca interacts with the same receptor proteins as Cry1A. In this study, we report the cloning of an ABC transporter gene, SeABCC2b, from the midgut of Spodoptera exigua (Hübner) larvae, and its expression in Sf9 cells for a functional analysis. The addition of Cry1Ca and Cry1Ac to Sf9 cell culture caused swelling in 28.5% and 93.9% of the SeABCC2-expressing cells, respectively. In contrast, only 7.4% and 1.3% of the controls cells swelled in the presence of Cry1Ca and Cry1Ac. Thus, SeABCC2b-expressing Sf9 cells had increased susceptibility to Cry1Ca and Cry1Ac. Similarly, S. exigua cadherin (SeCad1b) expressed in Sf9 cells caused 47.1% and 1.8% of the SeCad1b-expressing cells to swell to Cry1Ca and Cry1Ac exposure. Therefore, Sf9 cells expressing SeCad1b were more sensitive to Cry1Ca than Cry1Ac. Together, our data suggest that SeABCC2b from S. exigua mediates Cry1Ac cytotoxicity and, in conjunction with SeCad1b, contributes to enhance Cry1Ca toxicity in Sf9 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app