Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-322 inhibits inflammatory cytokine expression and promotes cell proliferation in LPS-stimulated murine macrophages by targeting NF-κB1 (p50).

Bioscience Reports 2017 Februrary 29
Inflammation is the body's normal self-protection mechanism to eliminate pathogens and resist pathogen invasion. The excessive inflammatory response may lead to inflammatory lesions. The mechanisms accounting for inflammation remain hazy. miRNAs have been proposed to have crucial effects on inflammation. In the present study, we reported that lipopolysaccharide (LPS)-stimulation increased the expression levels of inflammatory cytokines and the cell-cycle progression was suppressed in RAW264.7 cells. Meanwhile, the expression of miR-322 was significantly down-regulated after LPS treatment. Bioinformatics predictions revealed a potential binding site of miR-322 in 3'-UTR of NF-κB1 (p50) and it was further confirmed by luciferase assay. Moreover, both the mRNA and protein levels of NF-κB1 (p50) were down-regulated by miR-322 in RAW264.7 cells. Subsequently, we demonstrated that miR-322 mimics decrease in the expression levels of inflammatory cytokines and cell-cycle repression can be rescued following LPS treatment in RAW264.7 cells. The anti-inflammatory cytokines expression including IL-4 and IL-10 were significantly up-regulated. Furthermore, miR-322 could also promote RAW264.7 cells proliferation. These results demonstrate that miR-322 is a negative regulator of inflammatory response by targeting NF-κB1 (p50).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app