Add like
Add dislike
Add to saved papers

Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor.

Propofol is a commonly used intravenous anesthetic, and could attenuate cancer cells malignant potential via inhibiting hypoxia-inducible factor-1α (HIF-1α) expression. However, the mechanism is still inclusive. In the present study, we mainly focus on the mechanism by which propofol down-regulated HIF-1α expression and malignant potential in pancreatic cancer cells. Human pancreatic cancer cells (Miapaca-2 and Panc-1) in vitro and murine pancreatic cancer cell (Panc02) in vivo were used to assess the effect of propofol on vascular endothelial growth factor (VEGF) expression and migration of pancreatic cancer cells. Propofol inhibited cells migration, expression of VEGF and HIF-1α, phosphorylation of extracellular regulated protein kinases (ERK), AKT, Ca2+ /calmodulin dependent protein kinases II (CaMK II), and Ca2+ concentration in a concentration-dependent manner (5, 25, 50, 100μM). Furthermore, MK801, an inhibitor of NMDA receptor, and KN93, an inhibitor of CaMK II, could inhibit the expression of VEGF, HIF-1a, p-AKT, p-ERK, p-CaMK II in vitro, growth of tumor and VEGF expression in vivo, which were similar to the effect of propofol. In addition, the anti-tumor effect of propofol could be counteracted by rapastinel, an activator of NMDA receptor. Our study indicated that propofol suppressed VEGF expression and migration ability of pancreatic cancer cells in vitro and in vivo, probably via inhibiting NMDA receptor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app