Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Free fatty acids or high-concentration glucose enhances hepatitis A virus replication in association with a reduction in glucose-regulated protein 78 expression.

Although the interaction between host and hepatitis A virus (HAV) factors could lead to severe hepatitis A, the exact mechanism of acute liver failure caused by HAV infection is not yet fully understood. The effects of metabolic diseases such as dyslipidemia or diabetes mellitus on HAV replication are still unknown. Here, we examined the effects of free fatty acids or high-concentration glucose on HAV replication and the effects on mitogen-activated protein kinase signaling pathway-related genes in human hepatocytes. We discovered a novel effect of free fatty acids or high-concentration glucose on HAV replication in association with a reduction in the expression of glucose-regulated protein 78 (GRP78). We also observed that thapsigargin induced GRP78 expression and inhibited HAV replication. These findings may provide a new interpretation of the relationship between metabolic diseases and severity of hepatitis A and suggest a new understanding of the mechanism of severe HAV infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app