Add like
Add dislike
Add to saved papers

Lentiviral vector-driven inhibition of 5-HT synthesis in B3 bulbo-spinal serotonergic projections - Consequences on nociception, inflammatory and neuropathic pain in rats.

Experimental Neurology 2017 Februrary
Although it is well established that bulbo-spinal serotonergic projections contribute to pain control mechanisms, whether they exert anti- or pro-nociceptive modulations is still a matter of debate. In order to reappraise the role of 5-HT in descending controls, we used RNA interference to selectively inhibit 5-HT synthesis in B3 neurons and assess resulting changes in nociception. Rats were injected into the bulbar B3 group with a recombinant lentiviral vector, LV-shTPH2, encoding RNA interfering with tryptophan hydroxylase 2 expression. Together with the long term disappearance of this enzyme in the whole rostro-caudal extent of B3 group, 5-HT was markedly depleted selectively in the dorsal horn at all levels of the spinal cord. In contrast, immunolabeling of the 5-HT transporter was unaffected by LV-shTPH2 injection, indicating the preservation of serotonergic fibers integrity. Whereas mechanical and thermal nociceptive thresholds were unchanged by 5-HT depletion, marked reductions in intraplantar formalin (but not carrageenin)-evoked nocifensive responses, and, in contrast, significant increases in mechanical and thermal hyperalgesia evoked by sciatic nerve ligation were noted in LV-shTPH2-injected rats versus controls. Parallel changes in c-Fos immunolabeling within the dorsal horn confirmed that bulbo-spinal serotonergic projections modulate pain signaling under these various conditions. These results suggest that serotonergic neurons of the B3 group are only moderately concerned, if any, by acute nociception but exert modulatory influences under pain sensitizing conditions. The opposite changes in formalin injected- versus sciatic nerve ligated rats might be related to the implication of different receptors in 5-HT-mediated modulation of inflammatory versus neuropathic pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app