Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Imaging Organophosphate and Pyrophosphate Sequestration on Brucite by in Situ Atomic Force Microscopy.

In order to evaluate the organic phosphorus (OP) and pyrophosphate (PyroP) cycle and their fate in the environment, it is critical to understand the effects of mineral interfaces on the reactivity of adsorption and precipitation of OP and PyroP. Here, in situ atomic force microscopy (AFM) is used to directly observe the kinetics of coupled dissolution-precipitation on cleaved (001) surfaces of brucite [Mg(OH)2 ] in the presence of phytate, glucose-6-phosphate (G6P) and pyrophosphate, respectively. AFM results show that the relative order of contribution to mineral surface adsorption and precipitation is phytate > pyrophosphate > G6P under the same solution conditions and can be quantified by the induction time of OP/PyroP-Mg nucleation in a boundary layer at the brucite-water interface. Calculations of solution speciation during brucite dissolution in the presence of phytate or pyrophosphate at acidic pH conditions show that the solutions may reach supersaturation with respect to Mg5 H2 Phytate.6H2 O as a Mg-phytate phase or Mg2 P2 O7 as a Mg-pyrophosphate phase that becomes thermodynamically stable before equilibrium with brucite is reached. This is consistent with AFM dynamic observations for the new phase formations on brucite. Direct nanoscale observations of the transformation of adsorption/complexation-surface precipitation, combined with spectroscopic characterizations and species simulations may improve the mechanistic understanding of organophosphate and pyrophosphate sequestration by mineral replacement reactions through a mechanism of coupled dissolution-precipitation occurring at mineral-solution interfaces in the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app