Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Using Similarity Metrics to Quantify Differences in High-Throughput Data Sets: Application to X-ray Diffraction Patterns.

The objective of this research is to demonstrate how similarity metrics can be used to quantify differences between sets of diffraction patterns. A set of 49 similarity metrics is implemented to analyze and quantify similarities between different Gaussian-based peak responses, as a surrogate for different characteristics in X-ray diffraction (XRD) patterns. A methodological approach was used to identify and demonstrate how sensitive these metrics are to expected peak features. By performing hierarchical clustering analysis, it is shown that most behaviors lead to unrelated metric responses. For instance, the results show that the Clark metric is consistently one of the most sensitive metrics to synthetic single peak changes. Furthermore, as an example of its utility, a framework is outlined for analyzing structural changes because of size convergence and isotropic straining, as calculated through the virtual XRD patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app