Add like
Add dislike
Add to saved papers

Endothiovibrio diazotrophicus gen. nov., sp. nov., a novel nitrogen-fixing, sulfur-oxidizing gammaproteobacterium isolated from a salt marsh.

A novel non-phototrophic, marine, sulfur-oxidizing bacterium, strain S-1T, was isolated from a coastal salt marsh in Massachusetts, USA. Cells are Gram-stain-negative vibrios motile by means of a single polar unsheathed flagellum. S-1T is an obligate microaerophile with limited metabolic capacity. It grows chemolithoautotrophically utilizing sulfide and thiosulfate as electron donors, converting these compounds to sulfate, and the Calvin-Benson-Bassham cycle for carbon fixation. Cells of S-1T did not grow on any of a large number of organic carbon sources and there was no evidence for chemoorganoheterotrophic growth. Cells produced internal sulfur globules during growth on sulfide and thiosulfate. S-1T is strongly diazotrophic, as demonstrated by 15N2 fixation and acetylene reduction activity by cells when a fixed nitrogen source is absent from the growth medium. The marine nature of this organism is evident from its ability to grow in 10 to 100 % artificial seawater but not at lower concentrations and NaCl alone cannot substitute for sea salts. The major cellular fatty acids are C16 : 1ω7c, C16 : 0, and C18 : 1ω7c. Phosphatidylethanolamine and phosphatidylglycerol are the major polar lipids. Q8 is the only respiratory quinone. S-1T genomic DNA has a G+C content of 67.6 mol%. Based on its 16S rRNA gene sequence, S-1T shows the closest phylogenetic relationship to non-phototrophic species within the family Thioalkalispiraceae of the class Gammaproteobacteria. The name Endothiovibrio diazotrophicus is proposed for this organism, with S-1T as the type strain (ATCC BAA-1439T=JCM 17961T).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app