Add like
Add dislike
Add to saved papers

Long Noncoding RNA DANCR Is a Positive Regulator of Proliferation and Chondrogenic Differentiation in Human Synovium-Derived Stem Cells.

DNA and Cell Biology 2017 Februrary
Cartilage tissues have limited capacity for repair after damage and then cause osteoarthritis, so finding alternative treatment is ongoing. Mesenchymal stem cells (MSCs) have become a promising therapy for cartilage damage and diseases due to the advantages of easy separation, high proliferative potentiality, and genetic stability. Synovium-derived MSCs (SMSCs) have been recognized as an ideal source for cartilage repair. In our previous study, we found that Sox4 promoted proliferation and chondrogenesis of SMSCs through upregulation of long noncoding RNA (lncRNA) DANCR. However, the exact molecular mechanism by which DANCR promotes proliferation and chondrogenesis of SMSCs remains unknown. In the present study, we investigated the effect of lncRNA DANCR on the proliferation and chondrogenesis of SMSCs. We found that overexpression of DANCR could promote proliferation and chondrogenesis of SMSCs, while knockdown of DANCR had the opposite effect. Moreover, our data demonstrated that DANCR directly interacted with myc, Smad3, and STAT3 mRNA to regulate their stability. Finally, we found that the promotion of SMSC proliferation induced by DANCR depended on myc. Also, DANCR activated chondrogenesis of SMSCs via upregulation of Smad3 and STAT3 expression. Our growing knowledge of the role of DANCR is pointing toward its potential use as a novel therapeutic approach for cartilage damage and diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app