Add like
Add dislike
Add to saved papers

Direct Approach to Quantum Tunneling.

Physical Review Letters 2016 December 3
The decay rates of quasistable states in quantum field theories are usually calculated using instanton methods. Standard derivations of these methods rely in a crucial way upon deformations and analytic continuations of the physical potential and on the saddle-point approximation. While the resulting procedure can be checked against other semiclassical approaches in some one-dimensional cases, it is challenging to trace the role of the relevant physical scales, and any intuitive handle on the precision of the approximations involved is at best obscure. In this Letter, we use a physical definition of the tunneling probability to derive a formula for the decay rate in both quantum mechanics and quantum field theory directly from the Minkowski path integral, without reference to unphysical deformations of the potential. There are numerous benefits to this approach, from nonperturbative applications to precision calculations and aesthetic simplicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app