Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Two-component collagen nerve guides support axonal regeneration in the rat peripheral nerve injury model.

Progress in material development has enabled the production of nerve guides that increasingly resemble the characteristics of an autologous nerve graft. In the present study, 20 mm adult rat sciatic nerve defects were bridged with the collagen-based, two-component nerve guide 'Neuromaix', the commercially available NeuraGen® nerve tube or an autologous nerve graft. Neuromaix was able to support structural as well as functional regeneration across this gap. The majority of the axons grew across the scaffold into the distal nerve segment and retrograde tracing confirmed that these axons were of somatosensory and motor origin. Histomorphology revealed that axons regenerating through Neuromaix exhibited reduced myelin sheath thickness, whereas axon diameter and axon density were comparable to those of the autograft. Neuromaix implantation resulted in reinnervation of the gastrocnemius muscle to a level that was not significantly different from that supported by the autograft, as demonstrated by electrophysiology. Our findings show that the use of the Neuromaix scaffold not only allowed axonal regeneration across large nerve gaps, but that the regenerating axons were also able to functionally reinnervate the muscles. These data provide a promising perspective for the first in human application of the materials. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app