Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nrf2 inhibits epithelial-mesenchymal transition by suppressing snail expression during pulmonary fibrosis.

Scientific Reports 2016 December 17
Epithelial-mesenchymal transition (EMT) is a phenotype conversion that plays a critical role in the development of pulmonary fibrosis (PF). It is known that snail could regulate the progression of EMT. Nuclear factor erythroid 2 related factor 2 (Nrf2), a key regulator of antioxidant defense system, protects cells against oxidative stress. However, it is not known whether Nrf2 regulates snail thereby modulating the development of PF. Here, bleomycin (BLM) was intratracheally injected into both Nrf2-knockout (Nrf2-/- ) and wild-type mice to compare the development of PF. Rat type II alveolar epithelial cells (RLE-6TN) were treated with a specific Nrf2 activator sulforaphane, or transfected with Nrf2 and snail siRNAs to determine their effects on transforming growth factor β1 (TGF-β1)-induced EMT. We found that BLM-induced EMT and lung fibrosis were more severe in Nrf2-/- mice compared to wild-type mice. In vitro, sulforaphane treatment attenuated TGF-β1-induced EMT, accompanied by the down-regulation of snail. Inversely, silencing Nrf2 by siRNA enhanced TGF-β1-induced EMT along with increased expression of snail. Interestingly, when snail was silenced by siRNA, sulforaphane treatment was unable to reduce the progression of EMT in RLE-6TN cells. These findings suggest that Nrf2 attenuates EMT and fibrosis process by regulating the expression of snail in PF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app