Add like
Add dislike
Add to saved papers

Morphological characterization of colorectal cancers in The Cancer Genome Atlas reveals distinct morphology-molecular associations: clinical and biological implications.

Modern Pathology 2017 April
The Cancer Genome Atlas data on colorectal carcinoma have provided a comprehensive view of the tumor's genomic alterations and their tumorigenic roles. Tumor morphology, however, has not been fully integrated into the analysis. The aim of this study was to explore relevant associations between tumor morphology and the newly characterized genomic alterations in colorectal carcinoma. Two hundred and seven colorectal carcinomas that had undergone whole-exome sequencing as part of The Cancer Genome Atlas project and had adequate virtual images in the cBioPortal for Cancer Genomics constituted our study population. Upon analysis, a tight association between 'microsatellite instability-high histology' and microsatellite instability-high (P<0.001) was readily detected and helped validate our image-based histology evaluation. Further, we showed, (1) among all histologies, the not otherwise specified type had the lowest overall mutation count (P<0.001 for entire cohort, P<0.03 for the microsatellite-instable group), and among the microsatellite-instable tumors, this type also correlated with fewer frameshift mutations in coding mononucleotide repeats of a defined set of relevant genes (P<0.01); (2) cytosine phosphate guanine island methylator phenotype-high colorectal cancers with or without microsatellite instability tended to have different histological patterns: the former more often mucinous and the latter more often not otherwise specified; (3) mucinous histology was associated with more frequent alterations in BRAF, PIK3CA, and the transforming growth factor-β pathway when compared with non-mucinous histologies (P<0.001, P=0.01, and P<0.001, respectively); and (4) few colorectal cancers (<9%) exhibited upregulation of immune-inhibitory genes including major immune checkpoints; these tumors were primarily microsatellite-instable (up to 43%, vs <3% in microsatellite-stable group) and had distinctly non-mucinous histologies with a solid growth. These morphology-molecular associations are interesting and propose important clinical implications. The morphological patterns associated with alterations of immune checkpoint genes bear the potential to guide patient selection for clinical trials that target immune checkpoints in colorectal cancer, and provide directions for future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app