Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Environmental Electrophiles: Protein Adducts, Modulation of Redox Signaling, and Interaction with Persulfides/Polysulfides.

Included among the many environmental electrophiles are aromatic hydrocarbon quinones formed during combustion of gasoline, crotonaldehyde in tobacco smoke, methylmercury accumulated in fish, cadmium contaminated in rice, and acrylamide in baked foods. These electrophiles can modify nucleophilic functions such as cysteine residues in proteins forming adducts and in the process activate cellular redox signal transduction pathways such as kinases and transcription factors. However, higher concentrations of electrophiles disrupt such signaling by nonselective covalent modification of cellular proteins. Persulfide/polysulfides produced by various enzymes appear to capture environmental electrophiles because of the formation of their sulfur adducts without electrophilicity. We therefore speculate that persulfide/polysulfides are candidates for the regulation of redox signal transduction pathways (e.g., cell survival, cell proliferation, and adaptive response) and toxicity during exposure to environmental electrophiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app