Add like
Add dislike
Add to saved papers

Expression of Epithelial and Mesenchymal Differentiation Markers in the Early Human Gonadal Development.

Expressions of cytokeratin 8 (CK8), vimentin, nestin, and alpha-smooth-muscle-actin (alpha-SMA) were analyzed in the developing gonads of 12, 5-9 week old (W) human conceptuses by immunohistochemistry and immunofluorescence. During the investigated period, the number of CK8 positive cells increased from 56% to 92% in the gonadal surface epithelium, from 50% to 60% in the stroma, and from 23% to 42% in the medulla. In the early fetal period, the cell expression of CK8 increased in all gonadal parts, whereas primordial germ cells (PGC) remained negative. The expression of vimentin increased in the gonad stroma (gs) from 73% to 88%, and in the surface epithelium from 18% to 97% until ninth W. The medulla had the highest expression of vimentin in the seventh to eighth W (93%). Vimentin and CK8 colocalized in the somatic cells, while some PGCs showed vimentin expression only. Initially, nestin was positive in the gonad surface epithelium (8%) and stroma (52%), however during further development it decreased to 1% and 33%, respectively. In the early fetal period, the nestin positive cells decreased from 44% to 31% in the gonad medulla. Alpha-SMA was positive only in the blood vessels and mesonephros. The described pattern of expression of intermediate filaments (IF) in developing human gonads suggests their role in the control of PGC apoptosis, early differentiation of gs cells and cell migration. Both epithelial and mesenchymal origins of follicular cells and possible epithelial-to-mesenchymal transition of somatic cells is proposed. Lastly, IF intensity expression varies depending on the cell type and developmental period analyzed. Anat Rec, 300:1315-1326, 2017. © 2017 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app