Add like
Add dislike
Add to saved papers

Effects of antipsychotics on intestinal motility in zebrafish larvae.

BACKGROUND: Antipsychotics are essential for the treatment of schizophrenia. However, due to side effects, both continuity of treatment and patients' general health can be jeopardized. Some of these drugs, especially clozapine, have a class of side effects attributed to their antimuscarinic properties, such as dysmotility, a condition in which muscles of the digestive system become impaired. Dysmotility may also alter the speed, strength or coordination of the digestive organs, causing distention, disturbing gastrointestinal transit, leading to symptoms such as bloating, nausea, vomiting, and even malnutrition. In this study, our aim was to develop an in vivo assay capable of identifying and studying the antimuscarinic effects of antipsychotics in a zebrafish model.

METHODS: We performed video recordings of in vivo 5-day postfertilization (dpf) zebrafish larvae gastrointestinal tracts and analyzed the frequency of spontaneous and regular cycles of contractions of the gut.

KEY RESULTS: The assay was first validated with treatment with atropine. We showed that this antimuscarinic drug reduces peristaltic cycles. Subsequently, the larvae were treated with the antipsychotics haloperidol, risperidone, and clozapine. Neither haloperidol nor risperidone reduced gut motility, but clozapine significantly reduced the frequency of cycles of contractions (P<.0001), which confirms the existing clinical data.

CONCLUSIONS & INFERENCES: We conclude that this zebrafish assay efficiently identifies anticholinergic side effects of antipsychotics, and can thus be a quick and useful way to screen for this property in new drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app