Add like
Add dislike
Add to saved papers

Exploring STR signal in the single- and multicopy number regimes: Deductions from an in silico model of the entire DNA laboratory process.

Electrophoresis 2017 March
Short tandem repeat (STR) profiling from DNA samples has long been the bedrock of human identification. The laboratory process is composed of multiple procedures that include quantification, sample dilution, PCR, electrophoresis, and fragment analysis. The end product is a short tandem repeat electropherogram comprised of signal from allele, artifacts, and instrument noise. In order to optimize or alter laboratory protocols, a large number of validation samples must be created at significant expense. As a tool to support that process and to enable the exploration of complex scenarios without costly sample creation, a mechanistic stochastic model that incorporates each of the aforementioned processing features is described herein. The model allows rapid in silico simulation of electropherograms from multicontributor samples and enables detailed investigations of involved scenarios. An implementation of the model that is parameterized by extensive laboratory data is publically available. To illustrate its utility, the model was employed in order to evaluate the effects of sample dilutions, injection time, and cycle number on peak height, and the nature of stutter ratios at low template. We verify the model's findings by comparison with experimentally generated data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app