Add like
Add dislike
Add to saved papers

Neuroprotective Effects of Echinacoside on Regulating the Stress-Active p38MAPK and NF-κB p52 Signals in the Mice Model of Parkinson's Disease.

Herbal medicines have long been used to treat Parkinson's disease (PD). To systematically analyze the anti-parkinsonian activity of echinacoside (ECH) in a neurotoxic model of PD and provide a future basis for basic and clinical investigations, male C57BL/6 mice were randomized into blank control, PD model and ECH-administration groups. ECH significantly suppressed the dopaminergic neuron loss (P < 0.01) caused by MPTP and maintained dopamine content (P < 0.01) and dopamine metabolite content (P < 0.05) compared with that measured in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced damage. Additionally, ECH inhibited the activation of microglia and astrocytes in the substantia nigra, which suggested the involvement of neuroinflammation. The relevant cytokines were detected with a Proteome Profiler Array, which confirmed that ECH participated in the regulation of seven cytokines. Given that p38 mitogen-activated protein kinase (p38MAPK) and NF-kappaB (NF-κB) signals are considered to be closely related to neuroninflammation, the gene expression levels of p38MAPK and six NF-κB DNA-binding subunits were assessed. Western blotting analysis showed that both p38MAPK and the NF-κB p52 subunit were upregulated in the MPTP group and that ECH downregulated their expressions. Minocycline was administered as the positive control to inhibit neuroinflammation, and no differences were detected between the minocycline- and ECH-mediated inhibition of the p38MAPK and NF-κB p52 signals. In conclusion, echinacoside is a potential novel orally active compound for regulating neuroinflammation and related signals in Parkinson's disease and may provide a new prospect for clinical treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app