Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

A sensitive LC-MS/MS method for the quantification of regioisomers of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids in human plasma during endothelial stimulation.

Epoxyeicosatrienoic acids (EETs) are vasodilating lipid mediators metabolized into dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase. We aimed to develop a LC-MS/MS method to quantify EETs and DHETs in human plasma and monitored their levels during vascular endothelial stimulation. Plasma samples, collected from 14 healthy and five hypertensive subjects at baseline and during radial artery endothelium-dependent flow-mediated dilatation, were spiked with internal standards. Lipids were then extracted by a modified Bligh and Dyer method and saponified to release bound EETs and DHETs. Samples were purified by a second liquid-liquid extraction and analyzed by LC-MS/MS. The assay allowed identification of (±)8(9)-epoxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-EET); (±)11(12)-epoxy-5Z,8Z,14Z-eicosatrienoic acid (11,12-EET); (±)14(15)-epoxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-EET); (±)8,9-dihydroxy-5Z,11Z,14Z-eicosatrienoic acid (8,9-DHET); (±)11,12-dihydroxy-5Z,8Z,14Z-eicosatrienoic acid (11,12-DHET); and (±)14,15-dihydroxy-5Z,8Z,11Z-eicosatrienoic acid (14,15-DHET). (±)5(6)-epoxy-5Z,11Z,14Z-eicosatrienoic acid (5,6-EET) was virtually undetectable due to its chemical instability. The limits of quantification were 0.25 ng/mL for DHETs and 0.5 ng/mL for EETs. Intra- and inter-assay variations ranged from 1.6 to 13.2%. Heating induced a similar increase in 8,9-EET, 11,12-EET, and 14,15-EET levels and in corresponding DHET levels in healthy but not in hypertensive subjects. We validated a sensitive LC-MS/MS method for measuring simultaneously plasma EET and DHET regioisomers in human plasma and showed its interest for assessing endothelial function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app