Add like
Add dislike
Add to saved papers

Variation in Carbohydrates between Cancer and Normal Cell Membranes Revealed by Super-Resolution Fluorescence Imaging.

Carbohydrate alterations on cell membranes are associated with various cancer processes, including tumorigenesis, malignant transformation, and tumor dissemination. However, variations in the distributions of cancer-associated carbohydrates are unclear at the molecular level. Herein, direct stochastic optical reconstruction microscopy is used to reveal that seven major types of carbohydrates tended to form obvious clusters on cancer cell membranes compared with normal cell membranes (both cultured and primary cells), and most types of carbohydrates present a similar distributed characteristic on various cancer cells (e.g., HeLa and Os-Rc-2 cells). Significantly, sialic acid is found to distribute in larger-sized clusters with a higher cluster coverage percentage on various cancer cells than normal cells. These findings on the aberrant distributions of cancer-associated carbohydrates can potentially serve as novel diagnostic and therapeutic targets, as well as making a contribution to clarify how abnormal glycosylations of membrane glycoconjugates participate in tumorigenesis and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app