Add like
Add dislike
Add to saved papers

Genetic and Epigenetic Modulation of CD20 Expression in B-Cell Malignancies: Molecular Mechanisms and Significance to Rituximab Resistance.

CD20 is a differentiation related cell surface phosphoprotein that is expressed during early pre-B cell stages until plasma cell differentiation, and is a suitable molecular target for B-cell malignancies by monoclonal antibodies such as rituximab, ofatumumab, obinutuzumab and others. CD20 expression is confirmed in most B-cell malignancies; however, the protein expression level varies in each patient, even in de novo tumors, and down-modulation of CD20 expression after chemoimmunotherapy with rituximab, resulting in rituximab resistance, has been recognized in the clinical setting. Recent reports suggest that genetic and epigenetic mechanisms are correlated with aberrantly low CD20 expression in de novo tumors and relapsed/refractory disease after using rituximab. Furthermore, some targeting drugs, such as lenalidomide, bortezomib and ibrutinib, directly or indirectly affect CD20 protein expression. CD20-negative phenotypically-changed DLBCL after rituximab use tends to show an aggressive clinical course and poor outcome with resistance to not only rituximab, but also conventional salvage chemo-regimens. Understanding of the mechanisms of CD20-negative phenotype may contribute to establish strategies for overcoming chemo-refractory B-cell malignancies. In this manuscript, recent progress of research on molecular and clinical features of CD20 protein and CD20-negative B-cell malignancies was reviewed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app