JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states.

Clinical Science (1979-) 2017 Februrary 2
G-protein-coupled receptor 120 (GPR120) is a putative target for obesity and diabetes therapies. However, it remains controversial whether resident GPR120 plays a direct regulatory role in islet β-cell insulin secretion. The present study examined this issue in isolated rodent islets and rat β-cell line INS-1E, and assessed the role of GPR120 in islet insulin secretion in obese non-diabetic (OND) and diabetic states. GPR120 expression was detected in rodent islet β-cells. Docosahexaenoic acid (DHA) and synthetic GPR120 agonist GSK137647 (GSK) augmented insulin release from rat/mouse islets and INS-1E; DHA effects were partially mediated by GPR40. GPR120 knockdown and overexpression attenuated and enhanced DHA effects in INS-1E respectively. DHA and GSK improved postprandial hyperglycaemia of diabetic mice. Inhibition of calcium signalling in INS-1E reduced GPR120 activation-induced insulinotropic effects. The insulinotropic effects of DHA/GSK were amplified in OND rat islets, but diminished in diabetic rat islets. GPR120 and peroxisome proliferator-activated receptor γ (PPARγ) expression were elevated in OND islets and palmitic acid (PA)-treated INS-1E, but reduced in diabetic islets and high glucose-treated INS-1E. PPARγ activation increased GPR120 expression in rat islets and INS-1E. DHA and GSK induced protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) phosphorylation in rodent islets and INS-1E, and these effects were altered in OND and diabetic states. Taken together, the present study indicates that (i) GPR120 activation has an insulinotropic influence on β-cells with the involvement of calcium signalling; (ii) GPR120 expression in β-cells and GPR120-mediated insulinotropic effects are altered in OND and diabetic states in distinct ways, and these alterations may be mediated by PPARγ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app