JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Warm preconditioning protects against acute heat-induced respiratory dysfunction and delays bleaching in a symbiotic sea anemone.

Preconditioning to non-stressful warming can protect some symbiotic cnidarians against the high temperature-induced collapse of their mutualistic endosymbiosis with photosynthetic dinoflagellates ( Symbiodinium spp.), a process known as bleaching. Here, we sought to determine whether such preconditioning is underpinned by differential regulation of aerobic respiration. We quantified in vivo metabolism and mitochondrial respiratory enzyme activity in the naturally symbiotic sea anemone Exaiptasia pallida preconditioned to 30°C for >7 weeks as well as anemones kept at 26°C. Preconditioning resulted in increased Symbiodinium photosynthetic activity and holobiont (host+symbiont) respiration rates. Biomass-normalised activities of host respiratory enzymes [citrate synthase and the mitochondrial electron transport chain (mETC) complexes I and IV] were higher in preconditioned animals, suggesting that increased holobiont respiration may have been due to host mitochondrial biogenesis and/or enlargement. Subsequent acute heating of preconditioned and 'thermally naive' animals to 33°C induced dramatic increases in host mETC complex I and Symbiodinium mETC complex II activities only in thermally naive E. pallida These changes were not reflected in the activities of other respiratory enzymes. Furthermore, bleaching in preconditioned E. pallida (defined as the significant loss of symbionts) was delayed by several days relative to the thermally naive group. These findings suggest that changes to mitochondrial biogenesis and/or function in symbiotic cnidarians during warm preconditioning might play a protective role during periods of exposure to stressful heating.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app