Journal Article
Review
Add like
Add dislike
Add to saved papers

Exploring tuberculosis by molecular tests on DNA isolated from smear microscopy slides.

Tuberculosis (TB) is an infectious disease of global public health importance caused by Mycobacterium tuberculosis complex. The disease has worsened with the emergence of multidrug-resistant (MDR)-TB strains. The timely diagnosis and treatment of TB remains a key public health priority, and laboratories have a critical role in the rapid and accurate detection of TB and drug resistance. Molecular assays based on nucleic acid amplification techniques have been developed for the rapid, sensitive, and specific diagnosis of TB, with the ability to determine the drug sensitivity status. These molecular techniques are now available or are being implemented in developing countries. However, traditional microscopy and culture methods cannot yet be replaced; the molecular assays can be applied in parallel with these tests for the diagnosis of TB or for drug susceptibility testing. Performing such molecular tests is often restricted by constraints with regard to sputum sample storage and safe transportation from remote health centres to central laboratories. Since smear slides are performed routinely for the diagnosis of TB in most TB diagnostic laboratories, they are readily available and could be the ideal tool to transport sputum for further molecular tests. The aim of this review was to provide a comprehensive survey on the use of smear slides for both TB diagnosis and the molecular test approach. Based on the literature, stained smear microscopy slides can be a safe system for the transportation of sputum specimens from remote health centres to reference TB laboratories for further molecular TB or MDR-TB detection, and could help in the rapid diagnosis and therefore timely management of TB patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app