Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Genetic variants in SIRT3 transcriptional regulatory region affect promoter activity and fat deposition in three cattle breeds.

Sirtuin 3 (SIRT3) is a mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase. It has crucial roles in regulating the respiratory chain, in adenosine triphosphate (ATP) production, and in both the citric acid and urea cycles. The aim of this study was to investigate whether SIRT3 could be used as a candidate gene in the breeding of cattle. Expression analysis by quantitative real-time polymerase chain reactions (qPCR) indicated that expression levels of SIRT3 were highest in the kidney, rumen, liver, omasum and muscle. Using sequencing technology on a total of 913 cattle representing three indigenous Chinese beef cattle breeds, three single nucleotide polymorphisms (SNPs) were identified in the promoter region of SIRT3, and five haplotypes representing five potential transcription factor compositions of polymorphic potential cis-acting elements. Association analysis indicated that the Hap3/8 diplotype performed better than other combinations in intramuscular fat content. In addition, the promoter activity with Hap1 haplotype was higher than the Hap8 haplotype, consistent with the association analysis. The results indicate that the polymorphisms in transcription factor binding sites of SIRT3 promoter may affect the transcriptional activity of SIRT3, and thus alter intramuscular fat content in beef cattle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app