Add like
Add dislike
Add to saved papers

Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains.

Food Chemistry 2017 April 16
Essential oils (EOs), including menthone, oregano, cinnamon, lavender, and citral, are natural products that have antimicrobial and antioxidant activities. However, extremely low water solubility, and easy degradation by heat, restrict their application. The aim of this work was to evaluate the enhancement in antioxidative and antimicrobial activities of EOs encapsulated in starch nanoparticles (SNPs) prepared by short glucan chains. For the first time, we have successfully fabricated menthone-loaded SNPs (SNPs-M) at different complexation temperatures (30, 60, and 90°C) by an in situ nanoprecipitation method. The SNPs-M displayed spherical shapes, and the particle sizes ranged from 93 to 113nm. The encapsulation efficiency (EE) of SNPs-M increased significantly with an increase in complexation temperature, and the maximum EE was 86.6%. The SNPs-M formed at 90°C had high crystallization and thermal stability. The durations of the antioxidant and antimicrobial activities of EOs was extended by their encapsulation in the SNPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app