Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Reprogramming the Transcriptional Response to Hypoxia with a Chromosomally Encoded Cyclic Peptide HIF-1 Inhibitor.

ACS Synthetic Biology 2017 March 18
The cellular response to hypoxia is orchestrated by HIF-1, a heterodimeric transcription factor composed of an α and a β subunit that enables cell survival under low oxygen conditions by altering the transcription of over 300 genes. There is significant evidence that inhibition of HIF-1 would be beneficial for cancer therapy. We recently reported a cyclic hexapeptide that inhibits the HIF-1α/HIF-1β protein-protein interaction in vitro and prevents HIF-1-mediated hypoxia-response signaling in cells. This cyclic peptide was identified from a library of 3.2 × 106 members generated using SICLOPPS split-intein mediated protein splicing. With a view to demonstrating the potential for encoding the production of a therapeutic agent in response to a disease marker, we have engineered human cells with an additional chromosomal control circuit that conditionally encodes the production of our cyclic peptide HIF-1 inhibitor. We demonstrate the conditional production of our HIF-1 inhibitor in response to hypoxia, and its inhibitory effect on HIF-1 dimerization and downstream hypoxia-response signaling. These engineered cells are used to illustrate the synthetic lethality of inhibiting HIF-1 dimerization and glycolysis in hypoxic cells. Our approach not only eliminates the need for the chemical synthesis and targeted delivery of our HIF-1 inhibitor to cells, it also demonstrates the wider possibility that the production machinery of other bioactive compounds may be incorporated onto the chromosome of human cells. This work demonstrates the potential of sentinel circuits that produce molecular modulators of cellular pathways in response to environmental or cellular disease stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app