Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lack of Ecological and Life History Context Can Create the Illusion of Social Interactions in Dictyostelium discoideum.

Studies of social microbes often focus on one fitness component (reproductive success within the social complex), with little information about or attention to other stages of the life cycle or the ecological context. This can lead to paradoxical results. The life cycle of the social amoeba Dictyostelium discoideum includes a multicellular stage in which not necessarily clonal amoebae aggregate upon starvation to form a possibly chimeric (genetically heterogeneous) fruiting body made of dead stalk cells and spores. The lab-measured reproductive skew in the spores of chimeras indicates strong social antagonism that should result in low genotypic diversity, which is inconsistent with observations from nature. Two studies have suggested that this inconsistency stems from the one-dimensional assessment of fitness (spore production) and that the solution lies in tradeoffs between multiple life-history traits, e.g.: spore size versus viability; and spore-formation (via aggregation) versus staying vegetative (as non-aggregated cells). We develop an ecologically-grounded, socially-neutral model (i.e. no social interactions between genotypes) for the life cycle of social amoebae in which we theoretically explore multiple non-social life-history traits, tradeoffs and tradeoff-implementing mechanisms. We find that spore production comes at the expense of time to complete aggregation, and, depending on the experimental setup, spore size and viability. Furthermore, experimental results regarding apparent social interactions within chimeric mixes can be qualitatively recapitulated under this neutral hypothesis, without needing to invoke social interactions. This allows for simple potential resolutions to the previously paradoxical results. We conclude that the complexities of life histories, including social behavior and multicellularity, can only be understood in the appropriate multidimensional ecological context, when considering all stages of the life cycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app