JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Parallel activation of prospective motor plans during visually-guided sequential saccades.

Behavioural evidences suggest that sequential saccades to multiple stimuli are planned in parallel. However, it remains unclear whether such parallel programming reflects concurrent processing of goals or whether multiple motor plans coexist, unfolding subsequently during execution. Here we use midway saccades, directed at intermediate locations between two targets, as a probe to address this question in a novel double-step adaptation task. The task consisted of trials where subjects had to follow the appearance of two targets presented in succession with two sequential saccades. In some trials, the second target predictably jumped to a new location during the second saccade. Initially, the second saccade was aimed at the final target's location before the jump. As subjects adapted to the target jump, saccades were aimed to the second target's new location. We tested whether the spatial distribution of midway saccades could be explained as an interaction between two concurrent saccade goals, each directed at the two target locations, or between the initial motor plan to the first target location and a prospective motor plan directed from the initial to the final target location. A shift in the midway saccades' distribution towards the jumped location of the second target following adaptation indicated that the brain can make use of prospective motor plans to guide sequential eye movements. Furthermore, we observed that the spatiotemporal pattern of endpoints of midway saccades can be well explained by a motor addition model. These results provide strong evidence of parallel activation of prospective motor plans during sequential saccades.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app