Add like
Add dislike
Add to saved papers

Multiple-wavelength surface patterns in models of biological chiral liquid crystal membranes.

Soft Matter 2017 January 19
We present a model to investigate the formation of surface patterns in biological materials through the interaction of anisotropic interfacial tension, bending elasticity, and capillarity at their free surfaces. Focusing on the cholesteric liquid crystal (CLC) material model, the generalized shape equation for anisotropic interfaces using the Rapini-Papoular anchoring and Helfrich free energies is applied to understand the formation of multi-length scale patterns, such as those found in floral petals. The chiral liquid crystal-membrane model is shown to be analogous to a driven pendulum, a connection that enables generic pattern classification as a function of bending elasticity, liquid crystal chirality and anchoring strength. The unique pattern-formation mechanism emerging from the model here presented is based on the nonlinear interaction between bending-driven folding and anchoring-driven creasing. The predictions are shown to capture accurately the two-scale wrinkling of certain tulips. These new findings enable not only to establish a new paradigm for characterizing surface wrinkling in biological liquid crystals, but also to inspire the design of functional surface structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app