Add like
Add dislike
Add to saved papers

Synthesis and Properties of Tin Sulfide Thin Films from Nanocolloids Prepared by Pulsed Laser Ablation in Liquid.

Tin sulfide (SnS) nanoparticles were synthesized by pulsed laser ablation in liquid (PLAL) technique using an Nd:YAG laser operated at 532 nm. SnS thin films were deposited by spraying the colloidal suspension onto the heated substrates. The influence of different liquid media (dimethyl formamide and isopropyl alcohol) on the thin film properties were studied. Morphology, crystalline structure, and chemical composition of the nanoparticles were identified using transmission electron microscopy with energy dispersive X-ray analysis. The crystalline structure of the thin films was analyzed by using grazing incidence X-ray diffraction, and the chemical states by X-ray photoelectron spectroscopy. Scanning electron microscopy was employed for the morphological analysis of the thin films. Annealing the films at 380 °C improved the crystallinity of the films exhibiting a layered morphology, which may be useful in optoelectronic and sensing applications. Cyclic voltammetry studies showed that the films have good electrochemical properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app